Brodie, J. F. & Watson, J. E. M. Human responses to local weather change will probably decide the destiny of biodiversity. Proc. Natl Acad. Sci. 120, e2205512120 (2023).
Google Scholar
Pereira, H. M. et al. World tendencies and eventualities for terrestrial biodiversity and ecosystem companies from 1900 to 2050. Science 384, 458–465 (2024).
Google Scholar
Hoffmann, A. A. & Sgrò, C. M. Local weather change and evolutionary adaptation. Nature 470, 479–485 (2011).
Google Scholar
City, M. C. et al. Enhancing the forecast for biodiversity below local weather change. Science 353, aad8466 (2016).
Valladares, F. et al. The consequences of phenotypic plasticity and native adaptation on forecasts of species vary shifts below local weather change. Ecol. Lett. 17, 1351–1364 (2014).
Google Scholar
Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic results of local weather and land-use change affect broad-scale avian inhabitants declines. Glob. Chang. Biol. 25, 1561–1575 (2019).
Google Scholar
Wiens, J. J. Local weather-related native extinctions are already widespread amongst plant and animal species. PLoS Biol. 14, e2001104 (2016).
Google Scholar
Germain, R. R. et al. Species-specific traits mediate avian demographic responses below previous local weather change. Nat. Ecol. Evol. 7, 862–872 (2023).
Google Scholar
Hällfors, M. H. et al. Addressing potential native adaptation in species distribution fashions: implications for conservation below local weather change. Ecol. Appl. 26, 1154–1169 (2016).
Google Scholar
Razgour, O. et al. Contemplating adaptive genetic variation in local weather change vulnerability evaluation reduces species vary loss projections. Proc. Natl Acad. Sci. Usa. 116, 10418–10423 (2019).
Google Scholar
Buechley, E. R. et al. Differential survival all through the total annual cycle of a migratory chicken presents a life-history trade-off. J. Anim. Ecol. 90, 1228–1238 (2021).
Google Scholar
Newton, I. The migration ecology of birds. (Educational Press, 2008).
Shaw, T. A. et al. Regional local weather change: consensus, discrepancies, and methods ahead. Entrance. Clim. 6, 1391634 (2024).
Google Scholar
Thorup, Okay. et al. Response of an Afro-Palearctic chicken migrant to glaciation cycles. Proc. Natl. Acad. Sci. USA. 118, e2023836118 (2021).
Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Speedy microevolution of migratory behaviour in a wild chicken species. Nature 2, 173–179 (1992).
Dufour, P. et al. A brand new westward migration route in an Asian passerine chicken. Curr. Biol. 31, 5590–5596.e4 (2021).
Google Scholar
Ambrosini, R. et al. Local weather change and the long-term northward shift within the African wintering vary of the barn swallow Hirundo rustica. Clim. Res. 49, 131–141 (2011).
Google Scholar
Hällfors, M. H. et al. Shifts in timing and period of breeding for 73 boreal chicken species over 4 a long time. Proc. Natl Acad. Sci. USA. 117, 18557–18565 (2020).
Google Scholar
Romano, A., Garamszegi, L. Z., Rubolini, D. & Ambrosini, R. Temporal shifts in avian phenology throughout the circannual cycle in a quickly altering local weather: a world meta‐evaluation. Ecol. Monogr. 93, e1552 (2023).
Bairlein, F. Migratory birds below risk. Science 354, 547–548 (2016).
Google Scholar
Sanderson, F. J., Donald, P. F., Ache, D. J., Burfield, I. J. & van Bommel, F. P. J. Lengthy-term inhabitants declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).
Google Scholar
Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an evaluation of potential causes. Ibis 156, 1–22 (2014).
Google Scholar
Each, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Local weather change and inhabitants declines in a long-distance migratory chicken. Nature 441, 81–83 (2006).
Google Scholar
Howard, C. et al. Flight vary, gasoline load and the impression of local weather change on the journeys of migrant birds. Proc. Biol. Sci. 285, 20172329 (2018).
Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory chicken species that didn’t present a phenological response to local weather change are declining. Proc. Natl Acad. Sci. Usa. 105, 16195–16200 (2008).
Google Scholar
Saino, N. et al. Local weather warming, ecological mismatch at arrival and inhabitants decline in migratory birds. Proc. Biol. Sci. 278, 835–842 (2011).
Google Scholar
Christie, D. A. & Ferguson-Lees, J. Raptors of the World. (Bloomsbury Publishing, 2010).
Iñigo, A. & Barov, B. Motion plan for the lesser kestrel Falco naumanni within the European Union. Madrid: Web optimization‐BirdLife and BirdLife Worldwide for the European Fee. Madrid: Web optimization‐BirdLife and BirdLife Worldwide for the European Fee (2010).
Morganti, M., Preatoni, D. & Sarà, M. Local weather determinants of breeding and wintering ranges of lesser kestrels in Italy and predicted impacts of local weather change. J. Avian Biol. 48, 1595–1607 (2017).
Google Scholar
BirdLife Worldwide. Species factsheet: Falco naumanni. https://datazone.birdlife.org/species/factsheet/lesser-kestrel-falco-naumanni (2024).
Bounas, A. et al. Genetic construction of a patchily distributed philopatric migrant: implications for administration and conservation. Biol. J. Linn. Soc. Lond. 124, 633–644 (2018).
Google Scholar
Negro, J. J., Prenda, J., Ferrero, J. J., Rodríguez, A. & Reig-Ferrer, A. A timeline for the urbanization of untamed birds: the case of the lesser kestrel. Quat. Sci. Rev. 249, 106638 (2020).
Google Scholar
Crandall, Okay. A., Bininda-Emonds, O. R., Mace, G. M. & Wayne, R. Okay. Contemplating evolutionary processes in conservation biology. Developments Ecol. Evol. 15, 290–295 (2000).
Google Scholar
Moritz, C. Defining ‘evolutionarily important items’ for conservation. Developments Ecol. Evol. 9, 373–375 (1994).
Google Scholar
Turbek, S. P., Funk, W. C. & Ruegg, Okay. C. The place to attract the road? Increasing the delineation of conservation items to extremely cellular taxa. J. Hered. 114, 300–311 (2023).
Google Scholar
Funk, W. C., McKay, J. Okay., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation items. Developments Ecol. Evol. 27, 489–496 (2012).
Google Scholar
Chen, Y. et al. The mixture of genomic offset and area of interest modelling offers insights into local weather change-driven vulnerability. Nat. Commun. 13, 4821 (2022).
Google Scholar
Delmore, Okay. E. et al. Genomic evaluation of a migratory divide reveals candidate genes for migration and implicates selective sweeps in producing islands of differentiation. Mol. Ecol. 24, 1873–1888 (2015).
Google Scholar
Gu, Z. et al. Local weather-driven flyway modifications and memory-based long-distance migration. Nature 591, 259–264 (2021).
Google Scholar
Sønstebø, J. H. et al. Inhabitants genomics of a forest fungus reveals excessive gene stream and local weather adaptation signatures. Mol. Ecol. 31, 1963–1979 (2022).
Google Scholar
Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (Mal)adaptation throughout present and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).
Google Scholar
Rodríguez, A., Alcaide, M., Negro, J. J. & Pilard, P. Utilizing main histocompatibility advanced markers to assign the geographic origin of migratory birds: examples from the threatened lesser kestrel. Anim. Conserv. 14, 306–313 (2011).
Google Scholar
Wink, M., Sauer-Gürth, H. & Pepler, D. Phylogeographic relationships of the Lesser Kestrel (Falco naumanni) in breeding and wintering quarters inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Wink, M; Sauer-Gürth, H; Pepler, D; in Raptors Worldwide (eds. Chancellor, R. D. & Meyburg, B. U.) 505–510 (WWGBP, Berlin, 2004).
Lowry, D. B. et al. Breaking RAD: an analysis of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).
Google Scholar
Catchen, J. M. et al. Unbroken: RADseq stays a strong instrument for understanding the genetics of adaptation in pure populations. Mol. Ecol. Resour. 17, 362–365 (2017).
Google Scholar
McKinney, G. J., Larson, W. A., Seeb, L. W. & Seeb, J. E. RADseq offers unprecedented insights into molecular ecology and evolutionary genetics: touch upon Breaking RAD by Lowry et al. (2016). Mol. Ecol. Resour. 17, 356–361 (2017).
Google Scholar
Mérot, C., Oomen, R. A., Tigano, A. & Wellenreuther, M. A roadmap for understanding the evolutionary significance of structural genomic variation. Developments Ecol. Evol. 35, 561–572 (2020).
Google Scholar
Pacifici, M. et al. Assessing species vulnerability to local weather change. Nat. Clim. Chang. 5, 215–224 (2015).
Google Scholar
Scheffers, B. R. et al. The broad footprint of local weather change from genes to biomes to folks. Science 354, aaf7671(2016).
Fordham, D. A. et al. Utilizing paleo-archives to safeguard biodiversity below local weather change. Science 369, eabc5654 (2020).
Nogués-Bravo, D. et al. Cracking the code of biodiversity responses to previous local weather change. Developments Ecol. Evol. 33, 765–776 (2018).
Google Scholar
Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).
Google Scholar
Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in house and time. Proc. Biol. Sci. 277, 661–671 (2010).
Google Scholar
Pârâu, L. G. & Wink, M. Widespread patterns within the molecular phylogeography of western palearctic birds: a complete overview. J. Ornithol. 162, 937–959 (2021).
Google Scholar
Claussen, M., Dallmeyer, A. & Bader, J. Principle and modeling of the African humid interval and the inexperienced Sahara. in Oxford Analysis Encyclopedia Of Local weather Science https://doi.org/10.1093/acrefore/9780190228620.013.532 (2017).
Zeder, M. A. Domestication and early agriculture within the Mediterranean Basin: origins, diffusion, and impression. Proc. Natl Acad. Sci. USA. 105, 11597–11604 (2008).
Google Scholar
Buchan, C., Gilroy, J. J., Catry, I. & Franco, A. M. A. Health penalties of various migratory methods in partially migratory populations: A multi-taxa meta-analysis. J. Anim. Ecol. 89, 678–690 (2020).
Google Scholar
Ruegg, Okay. C., Hijmans, R. J. & Moritz, C. Local weather change and the origin of migratory pathways within the Swainson’s thrush, Catharus ustulatus. J. Biogeogr. 33, 1172–1182 (2006).
Google Scholar
Bustamante, J. Predictive fashions for lesser kestrel Falco naumanni distribution, abundance and extinction in southern Spain. Biol. Conserv. 80, 153–160 (1997).
Google Scholar
Morganti, M. et al. Assessing the relative significance of managed crops and semi-natural grasslands as foraging habitats for breeding lesser kestrels Falco naumanni in southeastern Italy. Wildl. Biol. 2021, 1–10 (2021).
Google Scholar
Parr, S. J. et al. A baseline survey of Lesser Kestrel Falco naumanni in south-east Kazakhstan, April-may 1997. Sandgrouse 22, 36–43 (2000).
Stephens, L. et al. Archaeological evaluation reveals Earth’s early transformation by land use. Science 365, 897–902 (2019).
Google Scholar
Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. The evolutionary genomics of species’ responses to local weather change. Nat. Ecol. Evol. 5, 1350–1360 (2021).
Google Scholar
Ahrens, C. W., Rymer, P. D. & Miller, A. D. Genetic offset and vulnerability modelling: misinterpretations of outcomes and violations of evolutionary rules. Authorea Preprints https://doi.org/10.22541/au.168727971.18670759/v1 (2023).
Rellstab, C. Genomics helps to foretell maladaptation to local weather change. Nat. Clim. Chang. 11, 85–86 (2021).
Google Scholar
Negro, J. J. & De La Riva, M. Patterns of winter distribution and abundance of lesser kestrels (Falco naumanni) in Spain. J. Raptor Res. 25, 2 (1991).
Bustamante, J. Cernícalo primilla (Falco naumanni). in Web optimization/BirdLife: Atlas de las aves en invierno en España 2007-2010 36–47 (Ministerio de Agricultura, Alimentación y Medio Ambiente-Web optimization/BirdLife. Madrid, 2012).
Brooks, M. et al. The African Chicken Atlas Venture: an outline of the undertaking and BirdMap data-collection protocol. Ostrich 93, 223–232 (2022).
Google Scholar
Brauer, C. J. et al. Pure hybridization reduces vulnerability to local weather change. Nat. Clim. Chang. 13, 282–289 (2023).
Google Scholar
Owens, G. L. & Samuk, Okay. Adaptive introgression throughout environmental change can weaken reproductive isolation. Nat. Clim. Chang. 10, 58–62 (2019).
Google Scholar
Corregidor-Castro, A. et al. Experimental nest cooling reveals dramatic results of heatwaves on copy in a Mediterranean chicken of prey. Glob. Chang. Biol. 29, 5552–5567 (2023).
Google Scholar
Catry, I., Amano, T., Franco, A. M. A. & Sutherland, W. J. Affect of spatial and temporal dynamics of agricultural practices on the lesser kestrel: Farmland administration and lesser kestrel breeding success. J. Appl. Ecol. 49, 99–108 (2012).
Google Scholar
Zwarts, L., Bijlsma, R. G. & van der Kamp, J. The fortunes of migratory birds from Eurasia: Being on a tightrope within the Sahel. Ardea 111, 397–437 (2023).
Google Scholar
Mihoub, J.-B., Gimenez, O., Pilard, P. & Sarrazin, F. Difficult conservation of migratory species: Sahelian rainfalls drive first-year survival of the susceptible Lesser Kestrel Falco naumanni. Biol. Conserv. 143, 839–847 (2010).
Google Scholar
Morganti, M., Ambrosini, R. & Sarà, M. Completely different tendencies of neighboring populations of Lesser Kestrel: results of local weather and different environmental circumstances. Popul. Ecol. 61, 300–314 (2019).
Google Scholar
Catry, I., Catry, T., Patto, P., Franco, A. M. A. & Moreira, F. Differential warmth tolerance in nestlings suggests sympatric species might face completely different local weather change dangers. Clim. Res. 66, 13–24 (2015).
Google Scholar
Marcelino, J. et al. Excessive occasions usually tend to have an effect on the breeding success of lesser kestrels than common local weather change. Sci. Rep. 10, 7207 (2020).
Google Scholar
Catry, I., Franco, A. M. A. & Sutherland, W. J. Adapting conservation efforts to face local weather change: Modifying nest-site provisioning for lesser kestrels. Biol. Conserv. 144, 1111–1119 (2011).
Google Scholar
Corregidor-Castro, A. et al. Temperature-related developmental plasticity, not choice, impacts offspring physique dimension and form in a chicken of prey. EcoEvoRxiv https://doi.org/10.32942/X2G04G (2024).
Google Scholar
Aparicio, J. M., Muñoz, A., Cordero, P. J. & Bonal, R. Causes of the latest decline of a Lesser Kestrel (Falco naumanni) inhabitants below an enhanced conservation state of affairs. Ibis 165, 388–402 (2022).
Google Scholar
Walther, G.-R. et al. Ecological responses to latest local weather change. Nature 416, 389–395 (2002).
Google Scholar
Koren, S. et al. De novo meeting of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36, 1174–1182 (2018).
Google Scholar
Rhie, A. et al. In direction of full and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).
Google Scholar
Lombardo, G. et al. The mitogenome relationships and phylogeography of barn swallows (Hirundo rustica). Mol. Biol. Evol. 39, msac113 (2022).
Google Scholar
Cho, Y. S. et al. Raptor genomes reveal evolutionary signatures of predatory and nocturnal existence. Genome Biol. 20, 181 (2019).
Google Scholar
Excoffier, L., Smouse, P. E. & Quattro, J. M. Evaluation of molecular variance inferred from metric distances amongst DNA haplotypes: software to human mitochondrial DNA restriction information. Genetics 131, 479–491 (1992).
Google Scholar
Cramp, S. et al. The Full Birds of the Western Palearctic on CD-ROM. (Oxford College Press, Oxford, England, 1998).
Berlusconi, A. et al. Intra-guild spatial area of interest overlap amongst three small falcon species in an space of latest sympatry. Eur. Zool. J. 89, 510–526 (2022).
Google Scholar
Elith, J. et al. A statistical rationalization of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
Google Scholar
Boucher-Lalonde, V., Morin, A. & Currie, D. J. A constant occupancy-climate relationship throughout birds and mammals of the Americas. Oikos 123, 1029–1036 (2014).
Google Scholar
Buckley, L. B. & Jetz, W. Linking world turnover of species and environments. Proc. Natl Acad. Sci. Usa. 105, 17836–17841 (2008).
Google Scholar
Rodríguez, A., Negro, J. J., Bustamante, J., Fox, J. W. & Afanasyev, V. Geolocators map the wintering grounds of threatened Lesser Kestrels in Africa. Divers. Distrib. 15, 1010–1016 (2009).
Google Scholar
Sarà, M. et al. Broad‐entrance migration results in sturdy migratory connectivity within the lesser kestrel (Falco naumanni). J. Biogeogr. 46, 2663–2677 (2019).
Google Scholar
Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. The R package deal ‘phuassess’ for assessing habitat choice utilizing permutation-based mixture of signal exams. Mamm. Biol. 83, 64–70 (2017).
Google Scholar
Broennimann, O. et al. Measuring ecological area of interest overlap from prevalence and spatial environmental information. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
Google Scholar
Forester, B. R., Lasky, J. R., Wagner, H. H. & City, D. L. Evaluating strategies for detecting multilocus adaptation with multivariate genotype–atmosphere associations. Mol. Ecol. 27, 2215–2233 (2018).
Google Scholar
Lotterhos, Okay. E. & Whitlock, M. C. The relative energy of genome scans to detect native adaptation depends upon sampling design and statistical methodology. Mol. Ecol. 24, 1031–1046 (2015).
Google Scholar
Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: calculating significance gradients on bodily predictors. Ecology 93, 156–168 (2012).
Google Scholar
Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic panorama of present and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).
Google Scholar
Bay, R. A. et al. Genomic indicators of choice predict climate-driven inhabitants declines in a migratory chicken. Science 359, 83–86 (2018).
Google Scholar
Capblancq, T., Lachmuth, S., Fitzpatrick, M. C. & Keller, S. R. From frequent gardens to candidate genes: exploring native adaptation to local weather in purple spruce. N. Phytol. 237, 1590–1605 (2022).
Google Scholar
Acquire, C. et al. A quantitative concept for genomic offset statistics. Mol. Biol. Evol. 40, msad140 (2023).
Capblancq, T. & Forester, B. R. Redundancy evaluation: a swiss military knife for panorama genomics. Strategies Ecol. Evol. 12, 2298–2309 (2021).
Google Scholar
Capblancq, T. et al. Local weather-associated genetic variation in Fagus sylvatica and potential responses to local weather change within the French Alps. J. Evol. Biol. 33, 783–796 (2020).
Google Scholar
Rodríguez, C. & Bustamante, J. The impact of climate on lesser kestrel breeding success: can local weather change clarify historic inhabitants declines? J. Anim. Ecol. 72, 793–810 (2003).
Google Scholar
Zhan, X. et al. Peregrine and saker falcon genome sequences present insights into evolution of a predatory way of life. Nat. Genet. 45, 563–566 (2013).
Google Scholar
Augustin, L. et al. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).
Google Scholar